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During the past two years, the Cornell University Portable Radar Interferometer (CUPRI)

has been used to provide the key launch criterion for the ERRRIS I and II auroral electrojet

rockets. The second of these two years was partially funded by NASA Grant NAG5-1116 and

included support for the data acquisition phase of the ERRRIS II campaigns and for data analysis

of both. Three NASA sounding rockets were flown from ESRANGE, Sweden during concurrent

observations with CUPRI. Results from a preliminary analysis were forwarded to our Technical

monitor, Dr. R.F. Pfaff, by J. Sahr as an interim progress report. This report summarizes

progress for the year of funding, but there still remains much to be done. Many of the

coordination details for comparing data from all the different instruments involved in the ERRRIS

campaign were discussed at the workshop of February 6-7, 1990. Some of the CUPRI ERRRIS

data is providing the basis of a Ph.D. thesis [Sahr, 1990], and has led to a paper that is now

accepted for publication in Radio Science [Sahr et al., 1990].

Portions of the CUPRI data set corresponding to rockets 21.100 launched at 18:17:14 UT on

1989 March 3 and 21.096 launched at 01:02:47 LIT on 1989 March 4 are included in this report.

Tables 1 and 2 list the CUPRI operating modes for these two launches. Either single or double

pulses were transmitted with interpulse periods (IPP's) between 2 ms and 6 ms (listed in

microseconds in the tables). A pulse separation of 240 gs was used for the double pulse cases.

(A zero tau indicates a single pulse mode.) The figures corresponding to each launch are grouped

together with the two mode summary tables.

The processing and presentation of CUPRI data depends on the operating mode used and

falls into one or more of four general categories. The first is the simple RTI (for Range Time-

Intensity) analysis that is generally presented in the form of a gray scale. Such plots are useful in

showing when and where there are regions of irregularities that scatter the radar signals and were

used to monitor conditions as part of the launch criterion. Examples of RTI type plots that were

created off-line are shown in Figures 1, 2, 10 and 11. Figures 2 and 11 expand the time and range

scales for the periods about the launches. The examples cover a wide range of different conditions

including times when instabilities covered most of the observable range, and other times when
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echo characteristics were rapidly changing. RTI plots have been generated for the entire evening

and late night hours of March 3-4 and are available upon request. Since short IPP's were used

during the actual rocket flights, some care must be exercised in the interpretation of just where the

echoes were coming from. It is altogether possible that some echoes that appear to be over

ESRANGE may in fact be aliased in from longer ranges. Earlier data from this night of March 3-4

showed strong echoes coming from all ranges between 300 km and almost 900 kin. Fortunately

the range aliasing was not this extreme during the rocket flights, and we hope that a detailed

analysis of the vertical interferometer data taken at this time (see below) will help sort out this

problem.

The second category is the detailed spectral analysis. Complete spectra at all ranges are

produced for every few seconds of real time. Examples of just a small portion of the spectra

available are shown in Figures 3-9 and 12-17. We generally group auroral spectra into four types.

The ERRRIS rocket payloads were designed to examine regions producing Type 11I and Type IV

echoes. Originally we had thought that the Type III echoes were produced by ion cyclotron waves

[Fejer et al., 1984]. Theoretical modelling showed that if this were to be the case, the waves

would have to be generated well above the collisional electrojet region. However, recent vertical

interferometer measurements with CUPRI indicate that the Type 111echoes are produced within the

electrojet region, and hence, the ion cyclotron wave theory seems to be no longer tenable, and the

source of these waves remains an open question. Type III spectral candidates that were observed

over ESRANGE prior to the launch of 21.096 seem to have been range aliased. The interferometer

analysis should shed more light on this problem.

The theory of the Type IV waves seems to be on more solid ground. We have proposed that

they are highly Doppler shifted two-stream waves caused by sporadic enhancements of the plasma

temperatures [Fejer et al., 1986; Provid,_kes et al., 1988]. EISCAT data acquisition programs

were configured for high temporal resolution for the temperature measurements, and indeed we

observed very short duration temperature enhancements [Providakes et al., 1988; Haggstrom,

ERRRIS workshop discussions, 1990]. During the flight of 21.100 Type IV waves at about 600

m/s (aliased) were observed in the vicinity of the rocket (see Figures 4-7), but detailed locations for

exact coincidence checks have not yet been worked out. Many of the spectra at ranges between

340 km and 400 km in Figures 5-7 show two distinct features, with one peak at about 250 to 300

rn/s (Type I) and another at velocities varying from 400 to 600 rn/s some of which are frequency

aliased in from 1200 m/s (Type IV). It is unlikely that these have both come from the same spatial

region, and the interferometer should tell us whether one of them was aliased in from longer

ranges, or whether there was some east-west separation.
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An example showing how frequency aliasing can be unraveled (the third analysis type) with

the double pulse mode is shown in Figure 12. Here first moments are generated for each velocity

(frequency) bin. Except for velocities between 300 and 550 m/s, both the spectrum and first

moment estimates are very noisy. At Dopplers where the signal is strong, we find that the true

shift is about -1200 rn/s rather than +400 m/s. This technique for removing frequency aliasing is

described in Sahr et al., [1989]. Many examples of Type IV spectra appear in Figures 13-16,

where they have not yet been de-aliased to the correct Doppler shifts with the full double pulse

analysis.

The fourth type of analysis we apply to CUPRI data is cross-spectral analysis between two

or more receivers to recover echo positional information. The volume of the raw data required for

this analysis and the volume produced is enormous. Two interferometer antenna baselines were

used for the ERRRIS campaigns. One baseline is used to determine the azimuthal position of

echoes within the 5 degree beam. The second gives the elevation angle which can be mapped into

either a vertical or north-south position of the echo. This analysis is very compute intensive and

we will do it only for data coincident with the rocket flights or other complementary measurements.

Several key portions of our data set were identified for this complete analysis during the recent

ERRRIS workshop at Goddard SFC.

This Grant was primarily intended to cover substantial costs of the campaign that were

beyond that which could be provided by other sources. Since the funds of the Grant have been

entirely expended, we will consider this as the final technical report. Much remains to be done,

however, and we do expect to continue working with the various scientists involved (in particular

the project scientist, Dr. R. Pfaff) to prepare several papers for publication in appropriate journals.
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